Python语言学习之Python深入06 Python的内存管理
冯建利 2019-04-10 来源 : 阅读 248 评论 0

摘要:本文主要向大家介绍了Python语言学习之Python深入06 Python的内存管理,通过具体的内容向大家展示,希望对大家学习Python语言有所帮助。

本文主要向大家介绍了Python语言学习之Python深入06 Python的内存管理,通过具体的内容向大家展示,希望对大家学习Python语言有所帮助。

Python语言学习之Python深入06 Python的内存管理

语言的内存管理

      语言的内存管理是语言设计的一个重要方面。它是决定语言性能的重要因素。无论是C语言的手工管理,还是Java的垃圾回收,都成为语言最重要的特征。这里以Python语言为例子,说明一门动态类型的、面向对象的语言的内存管理方式。

对象的内存使用

      赋值语句是语言最常见的功能了。但即使是最简单的赋值语句,也可以很有内涵。Python的赋值语句就很值得研究

a=1

      整数1为一个对象。而a是一个引用。利用赋值语句,引用a指向对象1。Python是动态类型的语言(参考动态类型),对象与引用分离。Python像使用“筷子”那样,通过引用来接触和翻动真正的食物——对象

图1


引用和对象

      为了探索对象在内存的存储,我们可以求助于Python的内置函数id()。它用于返回对象的身份(identity)。其实,这里所谓的身份,就是该对象的内存地址

a = 1
print(id(a))
print(hex(id(a)))

      在我的计算机上,它们返回的是:

11246696
'0xab9c68'

      分别为内存地址的十进制和十六进制表示。

      在Python中,整数和短小的字符,Python都会缓存这些对象,以便重复使用。当我们创建多个等于1的引用时,实际上是让所有这些引用指向同一个对象。

a = 1
b = 1
print(id(a))
print(id(b))

上面程序返回
11246696

11246696

      可见a和b实际上是指向同一个对象的两个引用。

      为了检验两个引用指向同一个对象,我们可以用is关键字。is用于判断两个引用所指的对象是否相同。

True
a = 1
b = 1
print(a is b)
True
a = ""good""
b = ""good""
print(a is b)
False
a = ""very good morning""
b = ""very good morning""
print(a is b)
False
a = []
b = []
print(a is b

      上面的注释为相应的运行结果。可以看到,由于Python缓存了整数和短字符串,因此每个对象只存有一份。比如,所有整数1的引用都指向同一对象。即使使用赋值语句,也只是创造了新的引用,而不是对象本身。长的字符串和其它对象可以有多个相同的对象,可以使用赋值语句创建出新的对象。

      在Python中,每个对象都有存有指向该对象的引用总数,即引用计数(reference count)。

      我们可以使用sys包中的getrefcount(),来查看某个对象的引用计数。需要注意的是,当使用某个引用作为参数,传递给getrefcount()时,参数实际上创建了一个临时的引用。因此,getrefcount()所得到的结果,会比期望的多1。

from sys import getrefcount
a = [1, 2, 3]
print(getrefcount(a))
b = a
print(getrefcount(b))

      由于上述原因,两个getrefcount将返回2和3,而不是期望的1和2。

对象引用对象

      Python的一个容器对象(container),比如表、词典等,可以包含多个对象。实际上,容器对象中包含的并不是元素对象本身,是指向各个元素对象的引用。

我们也可以自定义一个对象,并引用其它对象:

class from_obj(object):
def __init__(self, to_obj):
self.to_obj = to_obj
b = [1,2,3]
a = from_obj(b)
print(id(a.to_obj))
print(id(b))

可以看到,a引用了对象b。

      对象引用对象,是Python最基本的构成方式。即使是a = 1这一赋值方式,实际上是让词典的一个键值""a""的元素引用整数对象1。该词典对象用于记录所有的全局引用。该词典引用了整数对象1。我们可以通过内置函数globals()来查看该词典。

当一个对象A被另一个对象B引用时,A的引用计数将增加1。

from sys import getrefcount
a = [1, 2, 3]
print(getrefcount(a))
b = [a, a]
print(getrefcount(a))

由于对象b引用了两次a,a的引用计数增加了2

容器对象的引用可能构成很复杂的拓扑结构。我们可以用objgraph包来绘制其引用关系,比如:

x = [1, 2, 3]
y = [x, dict(key1=x)]
z = [y, (x, y)]
import objgraph
objgraph.show_refs([z], filename='ref_topo.png')

图2

objgraph是Python的一个第三方包。安装之前需要安装xdot。

sudo apt-get install xdot
sudo pip install objgraph

两个对象可能相互引用,从而构成所谓的引用环(reference cycle)。

a = []
b = [a]
a.append(b)

即使是一个对象,只需要自己引用自己,也能构成引用环

a = []
a.append(a)
print(getrefcount(a))

引用环会给垃圾回收机制带来很大的麻烦,我将在后面详细叙述这一点。

引用减少

某个对象的引用计数可能减少。比如,可以使用del关键字删除某个引用:

from sys import getrefcount
a = [1, 2, 3]
b = a
print(getrefcount(b))
del a
print(getrefcount(b))

del也可以用于删除容器元素中的元素,比如:

a = [1,2,3]
del a[0]
print(a)

如果某个引用指向对象A,当这个引用被重新定向到某个其他对象B时,对象A的引用计数减少:

from sys import getrefcount
a = [1, 2, 3]
b = a
print(getrefcount(b))
a = 1
print(getrefcount(b))

垃圾回收

        吃太多,总会变胖,Python也是这样。当Python中的对象越来越多,它们将占据越来越大的内存。不过你不用太担心Python的体形,它会乖巧的在适当的时候“减肥”,启动垃圾回收(garbage collection),将没用的对象清除。在许多语言中都有垃圾回收机制,比如Java和Ruby。尽管最终目的都是塑造苗条的提醒,但不同语言的减肥方案有很大的差异 (这一点可以对比本文和Java内存管理与垃圾回收

图3


      从基本原理上,当Python的某个对象的引用计数降为0时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。比如某个新建对象,它被分配给某个引用,对象的引用计数变为1。如果引用被删除,对象的引用计数为0,那么该对象就可以被垃圾回收。比如下面的表:


a = [1, 2, 3]
del a

      del a后,已经没有任何引用指向之前建立的[1, 2, 3]这个表。用户不可能通过任何方式接触或者动用这个对象。这个对象如果继续待在内存里,就成了不健康的脂肪。当垃圾回收启动时,Python扫描到这个引用计数为0的对象,就将它所占据的内存清空。

      然而,减肥是个昂贵而费力的事情。垃圾回收时,Python不能进行其它的任务。频繁的垃圾回收将大大降低Python的工作效率。如果内存中的对象不多,就没有必要总启动垃圾回收。所以,Python只会在特定条件下,自动启动垃圾回收。当Python运行时,会记录其中分配对象(object allocation)和取消分配对象(object deallocation)的次数。当两者的差值高于某个阈值时,垃圾回收才会启动。

我们可以通过gc模块的get_threshold()方法,查看该阈值:

import gc
print(gc.get_threshold())

返回(700, 10, 10),后面的两个10是与分代回收相关的阈值,后面可以看到。700即是垃圾回收启动的阈值。可以通过gc中的set_threshold()方法重新设置。

我们也可以手动启动垃圾回收,即使用gc.collect()

分代回收

      Python同时采用了分代(generation)回收的策略。这一策略的基本假设是,存活时间越久的对象,越不可能在后面的程序中变成垃圾。我们的程序往往会产生大量的对象,许多对象很快产生和消失,但也有一些对象长期被使用。出于信任和效率,对于这样一些“长寿”对象,我们相信它们的用处,所以减少在垃圾回收中扫描它们的频率。

图4


      Python将所有的对象分为0,1,2三代。所有的新建对象都是0代对象。当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象。垃圾回收启动时,一定会扫描所有的0代对象。如果0代经过一定次数垃圾回收,那么就启动对0代和1代的扫描清理。当1代也经历了一定·次数·的垃圾回收后,那么会启动对0,1,2,即对所有对象进行扫描。

      这两个次数即上面get_threshold()返回的(700, 10, 10)返回的两个10。也就是说,每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,才会有1次的2代垃圾回收。

同样可以用set_threshold()来调整,比如对2代对象进行更频繁的扫描。

import gc
gc.set_threshold(700, 10, 5)

孤立的引用环

引用环的存在会给上面的垃圾回收机制带来很大的困难。这些引用环可能构成无法使用,但引用计数不为0的一些对象。

a = []
b = [a]
a.append(b)
del a
del b

      上面我们先创建了两个表对象,并引用对方,构成一个引用环。删除了a,b引用之后,这两个对象不可能再从程序中调用,就没有什么用处了。但是由于引用环的存在,这两个对象的引用计数都没有降到0,不会被垃圾回收。


图5

孤立的引用环

       为了回收这样的引用环,Python复制每个对象的引用计数,可以记为gc_ref。假设,每个对象i,该计数为gc_ref_i。Python会遍历所有的对象i。对于每个对象i引用的对象j,将相应的gc_ref_j减1。

图6


在结束遍历后,gc_ref不为0的对象,和这些对象引用的对象,以及继续更下游引用的对象,需要被保留。而其它的对象则被垃圾回收。

总结

      Python作为一种动态类型的语言,其对象和引用分离。这与曾经的面向过程语言有很大的区别。为了有效的释放内存,Python内置了垃圾回收的支持。Python采取了一种相对简单的垃圾回收机制,即引用计数,并因此需要解决孤立引用环的问题。Python与其它语言既有共通性,又有特别的地方。对该内存管理机制的理解,是提高Python性能的重要一步。

本文由职坐标整理并发布,希望对同学们学习Python有所帮助,更多内容请关注职坐标编程语言Python频道!

本文由 @职坐标 发布于职坐标。未经许可,禁止转载。
喜欢 | 0 不喜欢 | 0
看完这篇文章有何感觉?已经有0人表态,0%的人喜欢 快给朋友分享吧~
评论(0)
后参与评论
本文作者 联系TA

喜欢和同学们打成一片,和同学们秉烛夜谈!

  • 10
    文章
  • 1016
    人气
  • 100%
    受欢迎度

已有1人表明态度,100%喜欢该老师!

进入TA的空间
名师指导 直通车
  • 索取资料 索取资料 索取资料
  • 答疑解惑 答疑解惑 答疑解惑
  • 技术交流 技术交流 技术交流
  • 职业测评 职业测评 职业测评
  • 面试技巧 面试技巧 面试技巧
  • 高薪秘笈 高薪秘笈 高薪秘笈
TA的其他文章 更多>>
Python语言学习之python学习笔记
经验技巧 0% 的用户喜欢
Python语言学习之Python 版本环境切换工具
经验技巧 0% 的用户喜欢
Python语言学习之python GIL
经验技巧 0% 的用户喜欢
Python语言学习之搬运工+Python漏洞挖掘那些不得不提的事儿
经验技巧 0% 的用户喜欢
Python语言学习之不懂Python学习如何下手?看完本文后你能明白60%
经验技巧 0% 的用户喜欢
其他海同名师 更多>>
刘新华
刘新华 联系TA
实力型。激情饱满,对专业充满热情
吴翠红
吴翠红 联系TA
独创“教、学、练、测”循环教学模式
吕益平
吕益平 联系TA
熟悉企业软件开发的产品设计及开发
黄泽民
黄泽民 联系TA
擅长javase核心技术
程钢
程钢 联系TA
擅长大型企业商业网站开发和管理
经验技巧30天热搜词 更多>>

您输入的评论内容中包含违禁敏感词

我知道了

助您圆梦职场 匹配合适岗位
验证码手机号,获得海同独家IT培训资料
选择就业方向:
人工智能物联网
大数据开发/分析
人工智能Python
Java全栈开发
WEB前端+H5

请输入正确的手机号码

请输入正确的验证码

获取验证码

您今天的短信下发次数太多了,明天再试试吧!

提交

我们会在第一时间安排职业规划师联系您!

您也可以联系我们的职业规划师咨询:

小职老师的微信号:13167058313
小职老师的微信号:13167058313

版权所有 职坐标-一站式IT培训就业服务领导者 沪ICP备13042190号-4
上海海同信息科技有限公司 Copyright ©2015 www.zhizuobiao.com,All Rights Reserved.
 沪公网安备 31011502005948号    ICP许可  沪B2-20190160

站长统计